Ionic strength- and pH-dependence of calcium binding by terrestrial humic acids

Author:

Christl Iso

Abstract

Environmental contextIn terrestrial environments, humic substances act as major sorbents for calcium, which is an essential nutrient for organisms. This study shows that calcium binding by terrestrial humic acids is strongly dependent on pH and ionic strength. The results indicate that calcium binding by humic acids is primarily controlled by electrostatic forces and specific binding to carboxylic groups. AbstractCalcium binding by two terrestrial humic acids was investigated at 25 °C as a function of pH, ionic strength and Ca2+ activity with calcium titration experiments. A Ca2+-selective electrode was used for Ca2+ measurements to cover a wide range of Ca2+ activities (10–8.5–10–2.5). Experimental data were quantitatively described with the NICA–Donnan model accounting for electrostatic and specific calcium binding. The results showed that calcium binding as a function of Ca2+ activity was strongly affected by variations of pH and ionic strength indicating that electrostatic binding is an important mechanism for calcium binding by humic acids. Data modelling providing a good description of experimental data for both humic acids suggested that electrostatic binding was the dominant calcium binding mechanisms at high Ca2+ activities often observed in terrestrial environments. Specific calcium binding being quantitatively predominant only at low Ca2+ activities was exclusively attributed to binding sites exhibiting a weak affinity for protons considered to represent mainly carboxylic groups. Since the negative charge of the humic acids being prerequisite for electrostatic calcium binding was found to be mainly due to deprotonation of carboxylic groups except under alkaline conditions, carboxylic groups were identified to primarily control calcium binding of humic acids.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3