Effects of macrophage-conditioned medium on sika deer (Cervus nippon) antler stem cells

Author:

Wang Zhen,Wang Datao,Qin Tao,Ba Hengxing,Wei Guanning,Li Yong,Yu Wei,Li Chunyi

Abstract

Context Immune system has been claimed as the ‘main switch’ of tissue or organ regeneration. Among immune cells, macrophages stand out as important modulators in mutiple regeneration models, such as planarian, axolotl, mammalian hair and liver. As a unique model for mammals, deer antler is considered to ideal for studying complete mammalian organ regeneration. Studies have found that antler regeneration is a stem cell-based process and antler stem cells locate in the pedicle periosteum (PP). Although the regulatory roles of the immune system in other regeneration models have been extensively studied, they remain unstudied in antler regeneration. Aims To explore the possible role of macrophages in the PP cells (PPCs). Methods We treated PPCs with a macrophage-conditioned medium (MCM) and detected effects of MCM on proliferation, migration and apoptosis of the PPCs, and identified differentially expressed genes by using the RNA-seq technique. Key results We found that MCM enhanced proliferation rate and migration rate significantly and stimulated apoptosis of the PPCs. Using the RNA-seq technique, we identified 112 differentially expressed genes in the PPCs (38 downregulated and 74 upregulated) after the MCM treatment. Furthermore, gene-ontology annotation analyses showed that the upregulated genes were mainly involved in cell adhesion, chemotaxis, wound healing, growth factor-stimulated responses, and bone formation, and the downregulated genes were involved in regulation of biosynthesis. Conclusions MCM had a great influence on the antler stem cells, and macrophages might regulate antler regeneration through altering the microenvironment and gene-expression profiles of the PPCs. Implications We believe that the results of the present study would facilitate the discovery of the roles of immune system in antler stem cells and, thus, mammalian organ regeneration in general.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3