THE ECONOMICS OF GEOLOGICAL STORAGE OF CO2 IN AUSTRALIA

Author:

Allinson W.G.,Nguyen D.N.,Bradshaw J.

Abstract

The economics of the storage of CO2 in underground reservoirs in Australia have been analysed as part of the Australian Petroleum Cooperative Research Centre’s GEODISC program. The economic analyses in the paper are based on cost estimates generated by a CO2 storage technical/economic model developed at the beginning of the GEODISC project. The estimates rely on data concerning the characteristics of geological reservoirs in Australia. The uncertainties involved in estimating the costs of such projects are discussed and the economics of storing CO2 for a range of CO2 sources and potential storage sites across Australia are presented.The key elements of the CO2 storage process and the methods involved in estimating the costs of CO2 storage are described and the CO2 storage costs for a hypothetical, but representative storage project in Australia are derived. The effects of uncertainties inherent in estimating the costs of storing CO2 are shown.The analyses show that the costs are particularly sensitive to parameters such as the CO2 flow rate, the distance between the source and the storage site, the physical properties of the reservoir and the market prices of equipment and services. Therefore, variations in any one of these inputs can lead to significant variation in the costs of CO2 storage. Allowing for reasonable variations in all the inputs together in a Monte Carlo simulation of any particular site, then a large range of total CO2 storage costs is possible. The effect of uncertainty for the hypothetical representative storage site is illustrated.The impact of storing other gases together with CO2 is analysed. These gases include methane, hydrogen sulphide, nitrogen, nitrous oxides and oxides of sulphur, all of which potentially could be captured together with CO2. The effect on storage costs when varying quantities of other gases are injected with the CO2 is shown.Based on the CO2 storage cost estimates and the published costs capturing CO2 from industrial processes, the economics are shown of combined capture and storage (that is, the sequestration process as a whole) for the major CO2 generation sites across Australia combined with potential compatible storage sites. Examples are shown of the volumes of CO2 that could be sequestered economically depending on the level of the carbon credit in a hypothetical carbon credit trading regime. Purely as an illustration, assuming hypothetically that a real carbon credit of US$50 per tonne applied and that the cost of capture was US$40 per tonne across the board, then preliminary indications are that, ignoring tax considerations, it would be economic to store about 180 million tonnes per year of CO2. This is equivalent to about 70% of the annual CO2 emissions from stationary sources in Australia in 2000.

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3