Electrophoresis as a simple method to detect deleterious actions of engineered nanoparticles on living cells

Author:

Vouriot Elise,Bihannic IsabelleORCID,Beaussart AudreyORCID,Waldvogel Yves,Razafitianamaharavo Angelina,Ribeiro Tania,Farinha José Paulo S.ORCID,Beloin ChristopheORCID,Duval Jérôme F. L.ORCID

Abstract

Environmental contextAttractive interactions and subsequent contacts between nanoparticles and microorganisms are the first steps of a chain of events leading to adverse effects toward cells. We show that the electrophoretic response of complex mixtures of engineered nanoparticles and bacteria reflects initial nanoparticle-mediated cell surface damage. The technique is a promising option for rapid detection of deleterious actions of nanoparticles on biological cells. AbstractThe release of engineered nanoparticles (NPs) to the environment may have profound implications for the health of aquatic biota. In this study, we show that the initial stage of the action of NPs on bacteria can be detected by the measurement of the electrophoretic fingerprints of mixed NP–cell dispersions. Such electrokinetic signatures reflect a modification of the physicochemical surface properties of both cells and NPs following changes in the organisation of the cell envelope, subsequent release of intracellular material and/or excretion of biomolecules. The demonstration is based on a thorough investigation of the electrohydrodynamic features of genetically engineered Escherichia coli bacteria with distinct surface phenotypes (presence of adhesive YeeJ large proteins or F-pili proteinaceous filaments) exposed to silica NPs (radius of 65nm) functionalised by -NH2 terminal groups. At pH 7, electrostatics prevents interactions between bacteria and SiNH2 NPs, regardless of the considered concentration of NPs (range of 0–10−2gL−1). At pH 3, electrostatically-driven interactions allow intimate contacts between NPs and bacteria. In turn, significant modulation of the electrophoretic determinants of cells and NPs are generated owing to the alteration of the cell envelope and acquisition of bio-corona by NPs. Differentiated roles of the cell surface appendages in the mediation of NP impacts are evidenced by the measured dependence of the electropherograms on cell surface phenotype and NP concentration. Cell morphology and surface roughness, evaluated by atomic force microscopy (AFM) in liquid, confirm the conditions of pH and concentration of NPs where NP–cell interactions are operational. The combination of electrokinetics and AFM further pinpoints heterogeneities in the cell response at the single cell and population scales. Altogether, the results show that electrophoresis is suitable to detect the preliminary stage of events leading to the toxicity of NPs towards microorganisms.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3