Seed dormancy in barley: identifying superior genotypes through incorporating epistatic interactions

Author:

Bonnardeaux Y.,Li C.,Lance R.,Zhang X. Q.,Sivasithamparam K.,Appels R.

Abstract

A genetic linkage map of barley with 128 molecular markers was constructed using a doubled haploid (DH) mapping population derived from a cross between barley (Hordeum vulgare) cvv. Stirling and Harrington. Quantitative trait loci controlling seed dormancy were characterised in the population. A major quantitative trait locus (QTL) controlling seed dormancy and accounting for over half the phenotypic variation (52.17%) was identified on the distal end of the long arm of chromosome 5H. Minor QTLs were also detected near the centromeric region of 5H and on chromosomes 1H and 3H. These minor QTLs with additive effects accounted for 7.52% of the phenotypic variance measured. Examination of epistatic interactions further detected additional minor QTLs near the centromere of 2H and on the long arm and short arms of 4H. Combinations of parental alleles at the QTL locations in predictive analyses indicated dramatic differences in germination. These results emphasise the potential differences in dormancy that can be achieved through the use of specific gene combinations and highlights the importance of minor genes and the epistatic interactions that occur between them. This study found that the combination of Stirling alleles at the two QTL locations on the 5H chromosome and Harrington alleles at the 1H and 3H QTL locations significantly produced the greatest dormancy. Uncovering gene complexes controlling the trait may enable breeders to produce superior genotypes with the desirable allele combinations necessary for manipulating seed dormancy in barley.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3