Effect of Wavelength of Light and Pulse Magnetisation on Different Magnetoreception Systems in a Migratory Bird

Author:

Munro Ursula,Munro John A.,Phillips John B.,Wiltschko Wolfgang

Abstract

Two hypotheses on magnetoreception in animals are currently discussed. The first hypothesis is based on light-dependent processes associated with the visual system, while the second hypothesis suggests that magnetoreception is based on biogenic magnetite. Both mechanisms are supported by experimental evidence, but whether the information they provide involves the magnetic compass or the ‘map’ is still open. In order to identify the relevance of light-dependent or magnetite-transduced processes in magnetoreception, juvenile migratory birds were tested for their orientation behaviour in the natural geomagnetic field as the only directional cue available to them. The test birds were juvenile Tasmanian silvereyes (Zosterops l. lateralis), which were caught on their native island soon after fledging, before they had an opportunity to establish a navigational ‘map’. (1) Under ‘white’ (full spectrum) and green light (571 nm), they were well oriented in their appropriate migratory direction, while they were disoriented under red light (633 nm). This coincides with previous findings on adult silvereyes and suggests that light-dependent processes are involved in an orientation mechanism used by both juvenile and adult migrants, namely the magnetic compass. (2) A short, high-intensity magnetic pulse, a treatment designed to alter the magnetisation of magnetite, did not affect the young birds´ orientation. They continued to select their seasonally appropriate migratory direction. In contrast, adult silvereyes from the same population had responded in a previous study with a 90° clockwise deflection from their normal migratory course. These results suggest that (a) magnetite is involved in an orientation mechanism used exclusively by adult migrants; and (b) a magnetite-based receptor is associated with the navigational ‘map’, which provides information on geographic position.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3