Fluxes of carbon and water in a Pinus radiata forest subject to soil water deficit

Author:

Arneth A.,Kelliher F.M.,McSeveny T.M.,Byers J.N.

Abstract

We measured, by eddy covariance, seasonal CO2 (FCO2) and water (E) fluxes in an 8-year-old New Zealand Pinus radiata D.Don plantation subject to growing season soil water deficit. Average rates of FCO2 and E were highest in spring (324 mmol m-2 d-1 and 207 mol m-2 d-1, respectively) when the abiotic environment was most favourable for surface conductance and photosynthesis. During summer, fluxes were impeded by soil water (θ) deficit and were equal to or smaller than during winter (FCO2 = 46 mmol m-2 d-1 in summer and 115 mmol m-2 d-1 in winter; E = 57 and 47 mol m-2 d-1, respectively). On particularly hot and dry days, respiration exceeded photosynthetic uptake and the ecosystem was a net carbon source. Portraying the underlying biochemistry of photosynthesis, daytime half-hourly FCO2 increased with quantum irradiance absorbed by the canopy (Qabs) following a non-saturating, rectangular hyperbola. Except for winter, this relation was variable, including hysteresis attributable to diurnal variation in air saturation deficit (D). Daily ecosystem FCO2, FCO2/Qabs and FCO2/E were inversely proportional to maximum daily D, but in the cases of FCO2 and FCO2/Qabs only after soil moisture deficit became established. Consequently, as the tree growing season progressed, ecosystem carbon sequestration was strongly limited by the co-occurrence of high D at low θ.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3