Does susceptibility to heat stress confound screening for drought tolerance in rice?

Author:

Jagadish Krishna S. V.,Cairns Jill E.,Kumar Arvind,Somayanda Impa M.,Craufurd Peter Q.

Abstract

Drought affected rice areas are predicted to double by the end of this century, demanding greater tolerance in widely adapted mega-varieties. Progress on incorporating better drought tolerance has been slow due to lack of appropriate phenotyping protocols. Furthermore, existing protocols do not consider the effect of drought and heat interactions, especially during the critical flowering stage, which could lead to false conclusion about drought tolerance. Screening germplasm and mapping-populations to identify quantitative trait loci (QTL)/candidate genes for drought tolerance is usually conducted in hot dry seasons where water supply can be controlled. Hence, results from dry season drought screening in the field could be confounded by heat stress, either directly on heat sensitive processes such as pollination or indirectly by raising tissue temperature through reducing transpirational cooling under water deficit conditions. Drought-tolerant entries or drought-responsive candidate genes/QTL identified from germplasm highly susceptible to heat stress during anthesis/flowering have to be interpreted with caution. During drought screening, germplasm tolerant to water stress but highly susceptible to heat stress has to be excluded during dry and hot season screening. Responses to drought and heat stress in rice are compared and results from field and controlled environment experiments studying drought and heat tolerance and their interaction are discussed.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3