Kinetics of the reaction between Manganese Dioxide and Ferrous Ion

Author:

Koch DFA

Abstract

The kinetics of the reaction between manganese dioxide and ferrous ion in acid solution have been investigated by using the potential of the ferrous-ferric couple as a measure of the extent of reaction. The experimental conditions were such that the reaction rate was independent of ferrous, ferric, manganous ions, and acid concentrations and the agitation was sufficient to prevent bulk diffusion in the solution from being a rate-determining factor. The reaction rate of sized samples of pyrolusite and γ-MnO2 in ferrous sulphate solution was proportional to the surface area of the solid and was constant (i.e. " zero-order ") until 50 per cent. of the solid was consumed. γ-MnO2 reacted about twice as rapidly as the pyrolusite. The reaction occurred most readily at certain active sites on the particles and appeared to proceed along crystal boundaries in such a manner that the active surface area was not significantly changed during the first half of the reaction. In ferrous perchlorate the reaction rate of 10 μ diameter pyrolusite was about one-hundredth of that in sulphate and the reaction appeared to occur at a more even rate over the whole surface of the particle so that the zero-order law was no longer obeyed. Activation energies of 7.4 and 5 kcal in sulphate and perchlorate respectively, for the temperature range 18 to 40 �C, suggest that the difference in rate is a result of a change in the entropy factor of the Arrhenius equation. It is suggested that this difference in rate may result from the activation, by sulphate ions, of a less reactive lower oxide of manganese which is formed on the surface.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3