Hydrological manipulation to assist spawning of a threatened galaxiid fish in a highland lake system

Author:

Hardie Scott A.

Abstract

Hydrological alterations threaten freshwater fishes globally, with infrastructure-related modification of inland waterways (e.g. dams, water diversions) having profound impacts on many species. Adapting existing water-management systems can provide opportunities for undertaking hydrological manipulations to assist management of threatened fishes. The present study conducted two hydrological manipulations in an impounded highland lake system in Tasmania, Australia, under differing hydrological conditions in 2007 and 2009, to assist recovery of an endemic species, Galaxias auratus, following a prolonged drought. Monitoring at egg, larvae, juvenile and adult life stages revealed a positive response by G. auratus in Lake Crescent (recipient of water release), with no adverse impact on the species in Lake Sorell (source of water release). In both years, reproductive constraints imposed by water level-related availability of sediment-free rocky substrata delayed spawning (~1 month) of G. auratus in Lake Crescent. Despite this, spawning and recruitment occurred in 2007 (drought year) and 2009 (drought-breaking year), and the 2007 manipulation resulted in a two-fold increase in the seasonal density of larvae in Lake Crescent and an abundant cohort of YOY fish. Given knowledge of life histories and eco-hydrological relationships, manipulating (or re-instating) hydrologic conditions is a powerful tool for assisting recovery of threatened lacustrine fishes.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3