Genotypic differences in leaf area maintenance contribute to differences in recovery from water stress in soybean

Author:

Lawn R. J.,Likoswe A. A.

Abstract

Genotypic effects on leaf survival during water deficit stress and subsequent recovery were evaluated using soybean plants grown in tall cylinders in the glasshouse. An initial experiment sought to verify reported genotypic differences in leaf area maintenance under severe water deficit stress. A second experiment sought to test the hypothesis that these putative differences might affect recovery after stress was relieved. Two shoot genotypes, G2120 and cv. Valder, reported to have high and low leaf area retention, respectively, were used in both experiments. In order to preclude the possibility that the reported differences between G2120 and Valder were related to root rather than shoot traits, each shoot was grafted at the cotyledonary stage onto 2 non-self root genotypes, cv. Leichhardt and PI416937. Leichhardt has an apparently normal root, while PI416937 has been reported to be ‘extensively fibrous-rooted’. In the first experiment, water was withheld at the first trifoliolate leaf stage and the plants subjected to terminal water deficit stress. Consistent with the previous report, leaf area was maintained for longer into the stress by the G2120 shoots, with rapid loss of lower leaves not starting until c. 90% of plant-available water (PAW) had been depleted, compared with c. 80% for Valder. The Valder leaves also showed more ‘firing’ damage, with large patches of dead leaf tissue on the retained leaves. Also consistent with the previous report, leaf epidermal conductance to water vapour was lower in G2120 than in Valder. There were no apparent root effects. In the second experiment, water was again withheld at the first trifoliolate leaf stage, and treatments were re-watered when 80%, 85%, 90%, and 95% of the estimated PAW was extracted. Again, G2120 shoots showed better leaf area maintenance during the drying cycle, and less firing damage. When the plants were re-watered, the re-growth of G2120 generally exceeded that of Valder at all levels of PAW depletion. The differences in recovery between G2120 and Valder shoots were sufficient to have agronomic relevance, and confirmed the hypothesis that leaf area retention can affect recovery after severe water deficit stress. Root effects were relatively small. During the drying cycle, leaflet growth was marginally enhanced by Leichhardt relative to PI416937 roots. After re-watering, there was stronger recovery of plants with PI416937 roots, especially those with G2120 shoots. The basis of the differences between the root genotypes is not known but the stronger recovery of PI416937 may reflect its putative ‘extensively fibrous’ nature.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3