The structure and activity of nodulation-suppressing CLE peptide hormones of legumes

Author:

Hastwell April H.,Gresshoff Peter M.,Ferguson Brett J.

Abstract

Legumes form a highly-regulated symbiotic relationship with specific soil bacteria known as rhizobia. This interaction results in the de novo formation of root organs called nodules, in which the rhizobia fix atmospheric di-nitrogen (N2) for the plant. Molecular mechanisms that regulate the nodulation process include the systemic ‘autoregulation of nodulation’ and the local nitrogen-regulation of nodulation pathways. Both pathways are mediated by novel peptide hormones called CLAVATA/ESR-related (CLE) peptides that act to suppress nodulation via negative feedback loops. The mature peptides are 12–13 amino acids in length and are post-translationally modified from the C-terminus of tripartite-domain prepropeptides. Structural redundancy between the prepropeptides exists; however, variations in external stimuli, timing of expression, tissue specificity and presence or absence of key functional domains enables them to act in a specific manner. To date, nodulation-regulating CLE peptides have been identified in Glycine max (L.) Merr., Medicago truncatula Gaertn., Lotus japonicus (Regel) K.Larsen and Phaseolus vulgaris L. One of the L. japonicus peptides, called LjCLE-RS2, has been structurally characterised and found to be an arabinosylated glycopeptide. All of the known nodulation CLE peptides act via an orthologous leucine rich repeat (LRR) receptor kinase. Perception of the peptide results in the production of a novel, unidentified inhibitor signal that acts to suppress further nodulation events. Here, we contrast and compare the various nodulation-suppressing CLE peptides of legumes.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3