Growth strategies as determinants of CO2 sequestration and response to nitrogen fertilisation in C4 grasses in South American natural grasslands

Author:

Marques Anderson Cesar RamosORCID,de Oliveira Leandro Bittencourt,Schwalbert RaíssaORCID,Del Frari Bianca Knebel,Brunetto Gustavo,de Quadros Fernando Luiz Ferreira,Nabinger Carlos,Nicoloso Fernando Teixeira

Abstract

Grass species grown in South American natural grasslands present different growth strategies related to variations in specific leaf area (SLA), leaf dry matter content (LDMC) and possible nitrogen (N) allocation. Nitrogen fertilisation can have effects on physiological processes such as CO2 assimilation; however, these responses can change depending on the growth strategy adopted by each species. The aim of the present study is to determine the effects of N fertilisation on SLA, LDMC and CO2 assimilation in eight C4 grass species: Axonopus affinis, Paspalum pumilum, P. notatum, P. urvillei, P. plicatulum, Andropogon lateralis, Saccharum angustifolium and Aristida laevis. These species were cultivated in pots filled with soil subjected to two conditions of N availability: nil (control) and 200 mg N kg–1 soil. The SLA of Axonopus affinis was 5.4 times higher than that of Aristida laevis. Axonopus affinis and P. pumilum recorded the lowest LDMC, their leaves showed 53% lower LDMC than observed for Aristida laevis, on average. Resource-capture species showed variation in leaf area with N addition to values 20% higher than the control, whereas species characterised by a resource-conservation growth strategy recorded variation in leaf area with N addition to values only 8% higher than the control. With N addition, the CO2 assimilation of resource-capture species represented variation (increase) nine times that of resource-conservation species compared with their respective controls. Resource-capture species have greater CO2 capture potential than resource-conservation species, mainly a result of N addition.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3