'Click' Preparation of Carbohydrate 1-Benzotriazoles, 1,4-Disubstituted, and 1,4,5-Trisubstituted Triazoles and their Utility as Glycosyl Donors

Author:

Watt Jacinta A.,Gannon Carlie T.,Loft Karen J.,Dinev Zoran,Williams Spencer J.

Abstract

Glycosyl triazoles can be prepared from readily available anomeric azides through various ‘click’ methodologies: thermal Huisgen cycloaddition with alkynes, strain-promoted Huisgen cycloaddition of benzynes, and CuI-catalyzed azide-alkyne cycloaddition of terminal alkynes (CuAAC reaction). Here we investigate the formation of glycosyl 1-benzotriazoles from anomeric and non-anomeric carbohydrate azides using benzynes derived from substituted anthranilic acids. The reactivity of the resulting anomeric 1-benzotriazoles as glycosyl donors was investigated and compared with 1,4-disubstituted glycosyl triazoles (from the CuAAC reaction) and 1,4,5-trisubstituted glycosyl triazoles (prepared by Huisgen cycloaddition of glycosyl azides and dimethyl acetylene dicarboxylate). The 1,4,5-trisubstituted glycosyl triazoles were activated by Lewis acids and could be converted to O-glycosides, S-glycosides, glycosyl chlorides, and glycosyl azides. By contrast, under all conditions investigated, the 1,4-disubstituted glycosyl triazoles were unreactive as glycosyl donors. Glycosyl 1-benzotriazoles were generally inert as glycosyl donors; however, a tetrafluorobenzotriazole derivative, which bears electron-withdrawing substituents on the benzotriazole group, was a moderate glycosyl donor and could be converted to an S-glycoside by treatment with thiocresol and tin(iv) chloride.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3