Consequences of prenatal and preweaning growth for feedlot growth, intake and efficiency of Piedmontese- and Wagyu-sired cattle

Author:

Cafe L. M.,Hennessy D. W.,Hearnshaw H.,Morris S. G.,Greenwood P. L.

Abstract

Consequences of low (mean 28.0 kg, n = 77) and high (mean 38.4 kg, n = 77) birthweight followed by slow (mean 548 g/day, n = 75) or rapid (mean 859 g/day, n = 79) growth to weaning for feedlot growth, intake and efficiency from 26 to 30 months of age were determined in Wagyu × Hereford (n = 81) and Piedmontese × Hereford (n = 73) cattle. Cattle were selected for study based on birthweight and preweaning growth rate, from multi-modal distributions achieved by imposition of low or high maternal nutrition during pregnancy and lactation, with the objective of achieving as close as possible to a 30% difference in birthweight and a 2-fold difference in preweaning growth rate between progeny groups. High birthweight cattle entered the intake test 57 kg heavier, grew 100 g/day more rapidly, and ate 1.0 kg dry matter /day more than the low birthweight cattle. The high birthweight cattle tended to have a higher feed conversion ratio than low birthweight cattle, but net feed intake did not differ due to birthweight group. Cattle grown rapidly to weaning entered the intake test 29 kg heavier, grew at an equivalent rate, and ate 0.7 kg dry matter/day more than the cattle grown slowly to weaning. No differences in feed conversion ratio or net feed intake were observed between the preweaning groups. When assessed at the same liveweight, differences in dry matter intake and/or feed conversion ratio due to birthweight or preweaning growth were no longer apparent. Interactions between prenatal and preweaning growth, or between sire genotype and early-life growth, were not evident for feedlot growth, intake or efficiency. It is concluded that severely restricted growth during prenatal life or from birth to weaning results in cattle that are smaller and consume less feed at the same age as their well grown counterparts; however, long-term effects of growth during early life on efficiency of utilisation of feed are not evident.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3