Anti-Leishmanial Activity of Novel Homo- and Heteroleptic Bismuth(III) Thiocarboxylates

Author:

Andrews Philip C.,Junk Peter C.,Kedzierski Lukasz,Peiris Roshani M.

Abstract

Two new thiocarboxylic acids, p-bromothiobenzoic BTA and thionaphthoic acid TNA, and five new homo- and heteroleptic bismuth(iii) compounds derived from thiocarboxylic acids: [Bi{S(C=O)C6H4Br}3] 1, [PhBi{S(C=O)C6H4Br}2] 2, [Bi{S(C=O)C10H7}3] 3, [PhBi{S(C=O)C10H7}2] 4, and [Ph2Bi{S(C=O)C10H7}] 5 were synthesised and fully characterised. The solid-state structure of complex [PhBi{S(C=O)C6H4Br}2] 2 was confirmed by X-ray crystallography. In complex 2, the two thiocarboxylate ligands are coordinated to the bismuth(iii) centre in a didentate fashion, forming a distorted octahedral geometry in which the phenyl group and the lone pair are oriented axial to the plane formed by the two thiocarboxylate ligands. Long-range Bi–S interactions (3.54 Å) link these monomeric units to form a one-dimensional polymer. These compounds, in addition to six previously synthesised complexes: [Bi{SC(=O)C6H5}3] 6, [PhBi{SC(=O)C6H5}2] 7, [Ph2Bi{SC(=O)C6H5}] 8, [Bi{SC(=O)C6H4NO2}3] 9, [PhBi{SC(=O)C6H4NO2}2] 10, and [PhBi{SC(=O)C6H4SO3}] 11, and the thiocarboxylic acids themselves, were assessed for their in vitro activity against Leishmania major promastigotes, and for general toxicity against human fibroblast cells. The thiocarboxylic acids, with the exception of thiobenzoic acid and sulfothiobenzoic acid, were toxic to both L. major parasites and the mammalian cells at high concentrations of 50–100 μM. The bismuth(iii) thiocarboxylate derivatives proved to be more active than the corresponding acids. Among these, the heteroleptic phenyl-substituted bismuth(iii) complexes 2, 4, 5, and 7 were highly active, showing IC50 (half maximal inhibitory concentration) values ranging from 0.39 to 4.69 μM, and a clear ligand dependence on activity.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3