DNA methylation of

Author:

Ba QingsongORCID,Wang Rui,Zhang Pengfei,Zhang Lanlan,Li Guiping,Fu Zhaolin

Abstract

In wheat (Triticum aestivum L.), S-type cytoplasmic male sterile (S-CMS) lines can mainly transform from sterility to fertility at the mononuclear pollen stage. Observations from microscopy revealed an inhibition of starch accumulation within the pollen grain, suggesting that an alteration in carbohydrate metabolism or assimilate supply may be involved in S-CMS pollen abortion. We measured levels of various carbohydrates and activities of key enzymes of sucrose metabolism at the mononuclear pollen stage in anthers collected from an S-CMS line and its maintainer line and found that nonreducing sugars increased in S-CMS anthers. Sucrose accounted for part of the nonreducing sugar accumulation. The activity of invertase declined significantly, whereas sucrose synthase activity during starch accumulation in pollen showed no significant change in S-CMS anthers at the mononuclear pollen stage. The results suggest that sucrose conversion and inhibition of invertase were probably responsible for the pollen abortion. Because there is a high correlation between the rate of ethylene evolution and sucrose content, ethylene anabolism was determined. TaACS2 regulates sucrose metabolism in pollen probably through catalysing the synthesis of ethylene precursor 1-aminocyclopropane-1-carboxylic acid in wheat. In this study, ethylene production of anthers underwent accumulation, revealed by gas chromatography, and expression levels of TaACS2 were upregulated in the S-CMS line, as determined by quantitative real-time PCR. We investigated the DNA methylation pattern of TaACS2 in the core promoter region using bisulfite genomic sequencing, and lower methylation was observed in the S-CMS line. These results suggest that DNA methylation of the TaACS2 gene may be involved in the sterility–fertility transition by regulating the synthesis of ethylene in S-CMS anthers.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3