Acoustic Vibrational Properties and Fractal Bond Connectivity of Praseodymium Doped Glasses

Author:

Senin H. B.,Sidek H. A. A.,Saunders G. A.

Abstract

The velocities of longitudinal and shear ultrasonic waves propagated in the (Pr2O3)x(P2O5)1-x glass system, where x is the mole fraction of Pr2O3 and (1 - x) is the mole fraction of P2O5, have been measured as functions of temperature and hydrostatic pressure. The temperature dependencies of the second order elastic stiffness tensor components (SOEC) CS IJ , which have been determined from the velocitydata between 10 and 300 K, show no evidence of phonon mode softening throughout the whole temperature range. The elastic stiffnesses increased monotonically, the usual behaviour associated with the effect of the phonon anharmonicityof atomic vibration. At low temperatures, strong phonon interactions with two-level systems have been observed. The ultrasonic wave attenuation of longitudinal and shear waves is dominated bya broad acoustic loss peak whose height and peak position are frequencydependent. This behaviour is consistent with the presence of thermally activated structural relaxation of the two-level systems in these glasses. The fractal bond connectivity of these glasses, obtained from the elastic stiffnesses determined from ultrasonic wave velocities, has a value between 2.32 to 2.55, indicating that their connectivitytends towards having a threedimensional character. The hydrostatic pressure dependencies of longitudinal ultrasonic waves show a slight increase with pressure. As a consequence, the hydrostatic pressure derivatives ( CS11/ P)P=0 of the elastic stiffness CS11/ and (BS/P)P=0 of the bulk modulus BS of (Pr2O3)x(P2O5)1-x glasses are positive. The bulk modulus increases with pressure, and thus these glasses stiffen under pressure, which is associated with the normal elastic behaviour. The GrÜneisen parameter approach has been used to quantifythe vibrational anharmonicityof the long-wavelength acoustic phonons in these glasses.

Publisher

CSIRO Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3