Author:
Taheri Abuzar,MacFarlane Douglas R.,Pozo-Gonzalo Cristina,Pringle Jennifer M.
Abstract
The conversion of thermal energy to electricity using thermoelectrochemical cells (thermocells) is a developing approach to harvesting waste heat. The performance of a thermocell is highly dependent on the solvent used in the electrolyte, but the interplay of the various solvent effects is not yet well understood. Here, using the redox couples [Co(bpy)3][BF4]2/3 (bpy=2,2′-bipyridyl) and (Et4N)3/(NH4)4Fe(CN)6, which have been designed to allow dissolution in different solvent systems (aqueous, non-aqueous, and mixed solvent), the effect of solvent on the Seebeck coefficient (Se) and cell performance was studied. The highest Se for a cobalt-based redox couple measured thus far is reported. Different trends in the Seebeck coefficients of the two redox couples as a function of the ratio of organic solvent to water were observed. The cobalt redox couple produced a more positive Se in organic solvent than in water, whereas addition of water to organic solvent resulted in a more negative Se for Fe(CN)6 3−/4−. UV-vis and IR investigations of the redox couples indicate that Se is affected by changes in solvent–ligand interactions in the different solvent systems.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献