Backcross reciprocal monosomic analysis of leaf relative water content, stomatal resistance, and carbon isotope discrimination in wheat under pre-anthesis water-stress conditions

Author:

Mohammady-D Shahram,Moore Keith,Ollerenshaw John,Shiran Behrooz

Abstract

Monosomic plants from an Australian variety (Oxley) having low stomatal resistance (SR), low leaf relative water content (LRWC), and high carbon isotope discrimination (Δ) were crossed with variety Falchetto having opposite characters in order to produce F2 backcross reciprocal monosomic families. The families were assessed under pre-anthesis water-stress conditions in a controlled growth chamber. F2 backcross reciprocal monosomic analysis suggested possible allelic variations between chromosomes 1A, 3A, 6A, 7A, 7B, 1D, and 4D of Falchetto and their homologues in Oxley for LRWC. This analysis also suggested possible allelic variation between chromosomes 5A, 1A, and 3A of Falchetto and their homologues in Oxley for SR. Extending the analysis to the F3 disomic generation and the assessment of LRWC at this generation confirmed that reciprocals for chromosomes 3A and 6A showed significant differences. F2 backcross reciprocal monosomic analysis for Δ suggested allelic variations on chromosomes 1D, 4D, and 5D. However, chromosome 1D from Falchetto had the highest difference from its homologue in Oxley. Assessing the reciprocals of this chromosome for vegetative evapotranspiration efficiency (ETEveg) at the F3 disomic generation indicated that the observed variation for Δ was translated into differences for ETEveg. These results indicate that chromosome 1D of Falchetto is promising in reducing Δ and that the improvement of wheat varieties for ETEveg can be done by selection for Δ. Finally, plieotropic effects of some chromosomes were observed for the characters under study. This suggests the existence of genetic factors on these chromosomes affecting more than one character. However, some pleiotropic effects could also be due to non-genetic developmental interactions.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3