Consistent, high-accuracy mapping of daily and sub-daily wildfire growth with satellite observations

Author:

McClure Crystal D.ORCID,Pavlovic Nathan R.ORCID,Huang ShihMing,Chaveste Melissa,Wang Ningxin

Abstract

Background Fire research and management applications, such as fire behaviour analysis and emissions modelling, require consistent, highly resolved spatiotemporal information on wildfire growth progression. Aims We developed a new fire mapping method that uses quality-assured sub-daily active fire/thermal anomaly satellite retrievals (2003–2020 MODIS and 2012–2020 VIIRS data) to develop a high-resolution wildfire growth dataset, including growth areas, perimeters, and cross-referenced fire information from agency reports. Methods Satellite fire detections were buffered using a historical pixel-to-fire size relationship, then grouped spatiotemporally into individual fire events. Sub-daily and daily growth areas and perimeters were calculated for each fire event. After assembly, fire event characteristics including location, size, and date, were merged with agency records to create a cross-referenced dataset. Key results Our satellite-based total fire size shows excellent agreement with agency records for MODIS (R2 = 0.95) and VIIRS (R2 = 0.97) in California. VIIRS-based estimates show improvement over MODIS for fires with areas less than 4047 ha (10 000 acres). To our knowledge, this is the finest resolution quality-assured fire growth dataset available. Conclusions and Implications The novel spatiotemporal resolution and methodological consistency of our dataset can enable advances in fire behaviour and fire weather research and model development efforts, smoke modelling, and near real-time fire monitoring.

Funder

The Pacific Gas and Electric Company

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3