Photosynthetic utilisation of inorganic carbon and its regulation in the marine diatom Skeletonema costatum

Author:

Chen Xiongwen,Gao Kunshan

Abstract

Photosynthetic uptake of inorganic carbon and regulation of photosynthetic CO2 affinity were investigated in Skeletonema costatum (Grev.) Cleve. The pH independence of K1/2(CO2) values indicated that algae grown at either ambient (12 μmol L–1) or low (3 μmol L–1) CO2 predominantly took up CO2 from the medium. The lower pH compensation point (9.12) and insensitivity of photosynthetic rate to di-isothiocyanatostilbene disulfonic acid (DIDS) indicated that the alga had poor capacity for direct HCO3– utilisation. Photosynthetic CO2 affinity is regulated by the concentration of CO2 rather than HCO3–, CO32– or total dissolved inorganic carbon (DIC) in the medium. The response of photosynthetic CO2 affinity to changes in CO2 concentration was most sensitive within the range 3–48 μmol L–1 CO2. Light was required for the induction of photosynthetic CO2 affinity, but not for its repression, when cells were shifted between high (126 μmol L–1) and ambient (12 μmol L–1) CO2. The time needed for cells grown at high CO2 (126 μmol L–1) to fully develop photosynthetic CO2 affinity at ambient CO2 was approximately 2 h, but acclimation to low or very low CO2 levels (3 and 1.3 μmol L–1, respectively) took more than 10 h. Cells grown at low CO2 (3 μmol L–1) required approximately 10 h for repression of all photosynthetic CO2 affinity when transferred to ambient or high CO2 (12 or 126 μmol L–1, respectively), and more than 10 h at very high CO2 (392 μmol L–1).

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3