When are metal complexes bioavailable?

Author:

Zhao Chun-Mei,Campbell Peter G.C.,Wilkinson Kevin J.

Abstract

Environmental contextThe concentration of a free metal cation has proved to be a useful predictor of metal bioaccumulation and toxicity, as represented by the free ion activity and biotic ligand models. However, under certain circumstances, metal complexes have been shown to contribute to metal bioavailability. In the current mini-review, we summarise the studies where the classic models fail and organise them into categories based on the different uptake pathways and kinetic processes. Our goal is to define the limits within which currently used models such as the biotic ligand model (BLM) can be applied with confidence, and to identify how these models might be expanded. AbstractNumerous data from studies over the past 30 years have shown that metal uptake and toxicity are often best predicted by the concentrations of free metal cations, which has led to the development of the largely successful free-ion activity model (FIAM) and biotic ligand model (BLM). Nonetheless, some exceptions to these classical models, showing enhanced metal bioavailability in the presence of metal complexes, have also been documented, although it is not yet fully understood to what extent these exceptions can or should be generalised. Only a few studies have specifically measured the bioaccumulation or toxicity of metal complexes while carefully measuring or controlling metal speciation. Fewer still have verified the fundamental assumptions of the classical models, especially when dealing with metal complexes. In the current paper, we have summarised the exceptions to classical models and categorised them into five groups based on the fundamental uptake pathways and kinetic processes. Our aim is to summarise the mechanisms involved in the interaction of metal complexes with organisms and to improve the predictive capability of the classic models when dealing with complexes.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3