The response of Nassella trichotoma (serrated tussock) seeds and seedlings to different levels of fire intensity

Author:

Humphries TaliaORCID,Florentine SingarayerORCID

Abstract

Context Fire is an important disturbance regime in grassland communities, since it is responsible for stimulating the regeneration of many species and for maintaining levels of biodiversity. When invasive plants, such as Nassella trichotoma, establish and become widespread in a grassland community, these important fire events can be altered in intensity and frequency, which means that they are able to facilitate the establishment of the exotic species. Therefore, before fire can be recommended as a suitable control technique for invasive species, or alternatively to be integrated into grassland restoration programs, understanding the response of the seeds of exotic species to high temperatures, such as those experienced during a fire, should be well understood. Aims Our aim was to identify their response to a gradient of temperatures associated with different levels of fire intensity. We examined how increased duration of exposure affects their response, and whether seed age or seed moisture content affect the germination response of this species. Methods To gain a fuller understanding of the fire response of N. trichotoma’s seedbank, seeds were collected in 2016, 2017, 2018 and 2019 and then stored until the commencement of the experiments in 2020. Selected seeds were first subjected to an increasing temperature gradient (80°C, 100°C, 120°C, 140°C, and a control), and an increasing duration of exposure (of 1, 3, 6, and 9 min). In the second experiment, one population was selected to test these same temperatures and duration of exposure after the seeds were hydrated to 15%, 50%, or 95%. Last, seedlings were grown for 3 months under glasshouse conditions and then exposed to increasing temperatures (20°C, 60°C, 80°C, 100°C, and 120°C), and an increasing duration of exposure (3, 6, and 9 min). The seedlings were assessed 2 weeks after the heat exposure for signs of damage. Key results It was found that increased temperatures and duration of exposure had a subtle negative effect on germination parameters, including reduced total germination and increased time to 50% germination. The 140°C treatment was seen to be a significant threshold because it killed all the seeds at any duration of exposure. A significant difference among the ages of each seed lot was observed to be a factor on the tested germination metrics, with the oldest tested population (2016) demonstrating the highest germination percentage, uniformity, and rate. Seed germination percentage was significantly reduced for seeds hydrated to 95% compared with the control treatment, whereas no significant difference was observed for the seeds hydrated to 15% and 50%. For the heat treatment of the seedlings, damage to the leaves was observed in the 80°C, 100°C, and 120°C treatments, with some plants in the 120°C treatment experiencing extensive damage prior to resprouting. No seedlings were killed at the tested temperatures. Conclusions Results of this study indicated that fire may be a useful tool for reducing seedbank density by killing a high proportion of the seeds on the soil surface, or located within the top 1 cm of the soil profile, but not for seeds buried more deeply. Efficacy of fire on surface and shallow-buried seeds is improved with high seed moisture content; however, these seeds buried below this depth are still protected by the soil from the lethal effects of temperature. Implications Fire implemented before seed set could be used to effectively kill a large proportion of N. trichotoma seeds. However, for more comprehensive control, it is recommended that chemical treatment is integrated with the fire treatment to improve the overall control efficiency.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Reference70 articles.

1. Rules for testing seeds.;Journal of Seed Technology,1993

2. Effectiveness and costs of invasive species control using different techniques to restore cerrado grasslands.;Restoration Ecology,2021

3. Intrapopulation variation in seed mass and its relationship to seed germinability.;Seed Science Research,2001

4. The role of fire disturbance on habitat structure and bird communities in South Brazilian Highland Grasslands.;Scientific Reports,2020

5. The effects of seed size, cotyledon reserves, and herbivory on seedling survival and growth in and (Fagaceae).;American Journal of Botany,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3