Studies of Cytokinin Action and Metabolism Using Tobacco Plants Expressing either the ipt or the GUS Gene Controlled by a Chalcone Synthase Promoter. IIipt and GUS Gene Expression, Cytokinin Levels and Metabolism

Author:

Wang Jian,Letham D. S.,Cornish Edwina,Wei K.,Hocart C. H.,Michael M.,Stevenson K. R.

Abstract

The expression of GUS and ipt genes under control of a chalcone synthase (chs) promoter (PCHS) has been determined in tobacco (Nicotiana tabacum L.) plants and related to the development of plants expressing the chimaeric PCHS -ipt gene. GUS gene expression, which served as a model for the expression of the ipt gene, was highest in the internal phloem tissue of stems, in mature leaf laminae and in the upper part of corollas when fully open. Expression of the PCHS -ipt gene was assessed by quantifying the cytokinins produced, by determining incorporation of [3H]adenine into cytokinins and by quantifying ipt mRNA. Results from these studies were in general agreement with those based on expression of the PCHS -GUS gene. The chs promoter controlled expression of the ipt gene with some degree of tissue and temporal specificity. Expression of the ipt gene markedly elevated the cytokinin level in mature leaf laminae and the upper stems of flowering plants. The former was associated with retardation of leaf senescence and increased rates of transpiration due to changes in number, size and aperture of stomata, while the latter was associated with development of lateral shoots. In shoot tip cultures, 2-fold elevations in endogenous cytokinin level caused clear changes in development and this is discussed in relation to current concepts concerning the hormonal control of plant development. Using the transgenic tobacco tissues, it was shown that cis-zeatin is a substrate for cytokinin oxidase, that cis-zeatin is not converted to trans-zeatin in these tissues and that the endogenous cytokinin level influences the level of cytokinin oxidase activity in tissue and the rate of degradation of exogenous zeatin riboside to adenosine.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3