Author:
Cui Xiang-Shun,Sun Shao-Chen,Kang Yong-Kook,Kim Nam-Hyung
Abstract
MicroRNA is a short RNA molecule expressed in eukaryotic cells that is involved in multiple processes, including translational repression, target degradation and gene silencing. However, its specific role(s) in these processes remains largely unknown, especially in terms of germ cell development. The present study identified a microRNA, namely miR-335-5p, that is involved in mouse oocyte meiosis. MiR-335-5p was highly expressed in oocytes, but levels decreased markedly shortly after fertilisation. Microinjection of miR-335-5p or its inhibitor into oocytes resulted in a higher proportion of 2-cell-like MII oocytes and oocytes at the germinal vesicle breakdown and/or MI stage, indicating failure of asymmetric oocyte division. This may be due to regulation of actin because perturbation of miR-335-5p resulted in reduced expression of actin nucleator Daam1, a member of the Formin family. Moreover, injection of miR-335-5p or its inhibitor resulted in aberrant spindle morphology, namely an elongated spindle and multiple poles spindle. After injection of oocytes, levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) decreased, suggesting that miR-335-5p may regulate spindle formation via the mitogen-activated protein kinase pathway. Overexpression and inhibition of miR-335-5p had no effect on embryo development. Together, the results of the present study indicate that miR-335-5p is a novel regulator expressed in oocytes that is involved in cytoskeleton dynamics.
Subject
Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献