Variation in root morphology and P acquisition efficiency among Trifolium subterraneum genotypes

Author:

McLachlan Jonathan W.ORCID,Haling Rebecca E.,Simpson Richard J.ORCID,Li Xiaoxi,Flavel Richard J.,Guppy Chris N.

Abstract

Trifolium subterraneum L. is widely grown in the phosphorus (P) deficient soils of southern Australia. However, this pasture legume has a high critical external P requirement and requires frequent applications of P fertiliser to achieve high productivity. Twenty-six genotypes of T. subterraneum were grown to determine: (i) differences in shoot growth and P acquisition under low-P supply; (ii) the root morphological traits important for P acquisition; and (iii) the feasibility of selection among genotypes for these root morphological traits. Micro-swards of each genotype were grown with a topsoil layer that was either moderately P-deficient or had P supplied in excess of the critical requirement for maximum yield; the subsoil layer was P-deficient. Yield and P content of shoots and roots were determined after 5 weeks’ growth, and root samples were assessed for diameter, length and root hair length. All genotypes were equally highly productive when excess P was supplied. However, relative shoot yield in the moderately P-deficient soil ranged from 38–71%. Total root length ranged from 63–129 m pot–1, and was correlated with total plant P uptake (R2 = 0.78, P < 0.001). Variation was also observed in average root diameter (0.29–0.36 mm) and root hair length (0.19–0.33 mm). These traits were combined with root length to calculate the total surface area of the root hair cylinder, which was also correlated with total plant P uptake (R2 = 0.69, P < 0.001). The results demonstrated that there was significant variation in P acquisition efficiency and shoot yield among genotypes of T. subterraneum when grown in P-deficient soil, and that root length was important for improved P uptake. The results indicate potential to identify superior genotypes that achieve improved P acquisition and higher shoot yields in low-P soil.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3