Pseudopregnancy and reproductive cycle synchronisation cannot be induced using conventional methods in the spiny mouse (Acomys cahirinus)

Author:

Bellofiore NadiaORCID,Ellery Stacey J.,Temple-Smith Peter,Evans Jemma

Abstract

The menstruating spiny mouse is the first rodent identified to exhibit natural spontaneous decidualisation, cyclical endometrial shedding and regeneration. While the spiny mouse shares several primate-like characteristics in its reproductive biology, it has not been established whether pseudopregnancy can be induced or if its cycles can be synchronised as in non-human mammals. Here we describe attempts to induce pseudopregnancy and synchronisation of menstrual cycles (i.e. Whitten effect) in spiny mice. Virgin females (n=3–8 per group) underwent one of the following procedures to induce pseudopregnancy: daily vaginal lavage only (control), progesterone injection, mechanical stimulation of the cervix and sterile mating. A separate cohort was also exposed to male-soiled bedding to assess the Whitten effect. Pseudopregnancy was deemed successful if females presented with extended (>12 consecutive days) leukocytic vaginal cytology. No female from any method of induction met this criterion. In addition, the menstrual cycles of a group of six females could not be synchronised, nor immediate ovulation induced via exposure to male-soiled bedding. These responses indicate that the spiny mouse does not behave as a typical rodent. Like higher-order primates, the spiny mouse exhibits a relatively rare reproductive strategy, of failure to show pseudopregnancy or cyclical synchronisation. This is further endorsement of the use of this species as a versatile animal model for translational studies of menstruation and fertility.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3