Associations of digestibility with phenotypic and genetic variation in methane production in Angus cattle

Author:

Smith H. C.,Herd R. M.ORCID,Donoghue K. A.,Bird-Gardiner T.,Arthur P. F.,Hegarty R. S.

Abstract

Context Cattle and sheep emit methane, a potent greenhouse gas, as part of the fermentation process of feed digestion in their gut; however, the mechanisms explaining differences among animals in enteric methane production are not fully understood. Aim To investigate whether variation among animals in their ability to digest their test ration was associated with phenotypic and genetic variation in methane production. Methods The experiment used 135 Angus beef cattle measured for their phenotypic and genetic merit for methane production. The extent of digestion of the dry matter (DMD) in the test ration by individual cattle was determined using silica as a naturally present indigestible marker. Its concentration in feed consumed and faeces was determined using rapid portable X-ray fluorescence spectroscopy, from which DMD was calculated. Key results Higher daily methane-production rate (MPR), higher methane produced per unit of feed consumed (methane yield; MY) and higher methane produced than the predicted daily production (residual MPR; RMP) by animals was accompanied by higher DMD. Higher genetic merit for MPR was also accompanied by higher DMD, but DMD had no detectable association with genetic variation in the other two methane emission traits. The regression coefficients for change in MPR (g/day), MY (g/kg DMI), RMP (g/day) with change in DMD (%) were 2.6 ± 1.1 (s.e.; P < 0.05), 0.14 ± 0.07 (P < 0.1) and 0.68 ± 0.38 (P < 0.1) respectively. Conclusions Differences among animals in their DMD were found and were associated with phenotypic variation in the three methane emission traits studied, and with genetic variation in daily methane production. The results support the caution that feeding and breeding interventions seeking to reduce methane emissions can also reduce the extent of digestion of feed by cattle. Implications Feeding and breeding interventions that seek to reduce methane emissions may change rumen physiology and reduce the extent of digestion of feed by cattle, which may be undesirable.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3