Effect of lock up and harvest dates on dairy pasture dry matter yield and quality for silage in south-western Victoria

Author:

Jacobs J. L.,Rigby S. E.,McKenzie F. R.,Ward G. N.,Kearney G.

Abstract

Summary. At 2 sites in south-western Victoria, 132 plots of predominantly perennial ryegrass pasture were randomly allocated, within 4 replicate blocks, to each of 3 lock up dates (L1, L2, L3) by 12, 12 or 9 harvest times. Harvesting commenced 2 weeks after initial treatment lock up with L1 and L2 being harvested 12 times (weekly intervals) and L3, 9 times. Lock up dates were 15 August (L1), 5 September (L2) and 26 September (L3) at site 1 and 17 August (L1), 7 September (L2) and 28 September (L3) at site 2. For each treatment and harvest date, dry matter yield and botanical composition were determined and samples of total pasture and the ryegrass fraction were collected and assessed for dry matter digestibility, crude protein and neutral detergent fibre. Dry matter yield was measured from the start of L1 (site 1, 15 August; site 2, 17 August) until the final harvest date of L3 (site 1, 12 December; site 2, 14 December). At site 1, L3 produced higher dry matter yields than L1 and L2 at comparable lengths of lock up time, whilst there were no differences at site 2. Over the total experimental period (site 1, 15 August–12 December; site 2, 17 August–14 December) there were no differences in total dry matter yield (t/ha) between treatments at either site (site 1—L1 5.79, L2 6.43, L3 5.94; site 2—L1 6.68, L2 5.07, L3 5.73). Treatments had little effect on botanical composition at either site when compared at the same time after lock up, both during the harvesting period or in the subsequent autumn. Pasture metabolisable energy and crude protein all declined with increasing length of lock up whilst neutral detergent fibre content increased, changes which were similar for both the total pasture and the ryegrass fraction. The metabolisable energy of pasture in L1 and L2 was higher than that of L3 at least until week 8 at both sites. Initial crude protein values were higher for L1 and L2 than for L3 at site 1, whilst at site 2, L1 had higher values than either L2 or L3. Although longer lock up periods produced more herbage, if conserving forage is to be an integral component of managing surplus spring pasture, then dairy farmers should aim to produce high quality pasture for forage conservation. This will be achieved through shorter lock up periods and harvesting pasture no later than early ear emergence in the ryegrass fraction of the sward. This management will reduce dry matter yields, but allow more flexibility for maintaining intensive grazing practices through the spring period. The decision about when to lock up pasture will depend on both plant growth rates and animal feed requirements.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3