Equine placentation

Author:

Allen W. R.,Stewart Francesca

Abstract

A tough, elastic glycoprotein capsule envelops the equine blastocyst between Days 6 and 23 after ovulation. It maintains the spherical configuration of, and provides physical support for, the embryo as it traverses the entire uterine lumen during Days 6–17, propelled by myometrial contractions that are stimulated by pulsatile release of prostaglandin F2α and prostaglandin E2. The capsule also accumulates constituents of the exocrine secretions of the endometrial glands (‘uterine milk’) as nutrients for the mobile embryo as it releases its antiluteolytic maternal recognition-of-pregnancy signal to the whole of the surface of the endometrium. Mobility ceases abruptly on Day 17 with a sudden increase in uterine tonicity that ‘fixes’ the conceptus at the base of one of the uterine horns. At Day 35, the trophoblast of the spherical conceptus has separated into its invasive and non-invasive components. The former, distinguished as the thickened, annulate chorionic girdle, invades the maternal endometrium to form the unique endometrial cups. These secrete a chorionic gonadotrophin that synergizes with pituitary follicle-stimulating hormone to induce secondary luteal development in the maternal ovaries. The cup cells express foreign fetal antigens that stimulate strong maternal humoral and cell-mediated immune responses, which curtail their lifespan. The non-invasive trophoblast of the allantochorion establishes a stable microvillous contact with the endometrial epithelium around Day 40 and, over the next 100 days, develops a complex multibranched interdigitation with the endometrium to form the microcotyledonary haemotrophic exchange units that cover the entire surface of the diffuse epitheliochorial placenta. Reduction in the effective total area of fetomaternal contact at this placental interface, by competition between twin conceptuses for the limited area of available endometrium, by attachment of the allantochorion to an imperfect endometrium in a mare with endometrosis, or following cross-breeding or embryo transfer between a sire and dam of dissimilar size, will all induce intrauterine growth retardation of the fetus and runting of the foal, which persists into adult life. Over 40 years ago, Professor Roger Short and his colleagues determined that the high concentrations of conventional and unique ring B unsaturated oestrogens in the blood and urine of mares during the second half of pregnancy stem from placental aromatization of large quantities of C-19 precursor molecules secreted by the temporarily hypertrophic fetal gonads. Placental production of progesterone and 5α-reduced progestagens, on the other hand, depends on both maternal and fetal adrenal sources of pregnenelone.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3