Review and conceptual models of agricultural impacts and water quality in waterways of the Great Barrier Reef catchment area

Author:

Davis Aaron M.,Pearson Richard G.,Brodie Jon E.,Butler Barry

Abstract

Adequate conceptual frameworks that link land use to water quality and ecosystem health are lacking for tropical and subtropical freshwater systems, so we review here extensive water-quality research undertaken in the Great Barrier Reef catchment area (GBRCA) and present conceptual models synthesising the dynamics of agricultural pollutants and their ecological effects. The seasonal flow regime defines the following key periods of water-quality risk over the annual hydrological cycle for diverse GBRCA ecosystems: initial ‘pre-flush’ flows during the transition from the dry to the wet season; early wet-season ‘first flush’ flows; peak wet-season flood flows; and sustained base flow or periods of disconnection during the dry season. The level of seasonal contrast varies from the perennial systems of the wet tropics to the intermittent systems of the dry tropics. Major water-quality stressors may be catchment scale (e.g. in streams draining broad-scale agriculture) or more localised (e.g. cattle access, irrigation tail water). Water-quality stressors such as ammonia toxicity and hypoxia (due to organic or nutrient run-off and enhanced plant productivity) are of low relevance to downstream GBR ecosystems but are major threats to fresh waters. Similarly, whereas high contaminant loads in wet-season floods present the highest water-quality risk to marine ecosystems, the greatest risk in fresh waters is often from acute contamination during early wet-season ‘pre-flush’ flows into lentic waters, or continuous input of contaminants over long periods of base flow. Because of differences in the nature of risk periods, water-quality threats and pollutant-delivery mechanisms, the benefits of different management options to improve water quality can also differ among freshwater habitats and between freshwater and marine environments.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3