Author:
Burgin Hugo B.,Amrouch Khalid,Rajabi Mojtaba,Kulikowski David,Holford Simon P.
Abstract
The structural history of the Otway Basin has been widely studied; however, previous works have focussed on large kilometre scale, basin and seismic structures, or have over-simplified natural fracture analysis with an excessive focus on fracture strike direction and a disregard for 3D geometry, a crucial characteristic when considering states of stress responsible for natural fracture formation. In this paper, we combine techniques of natural fracture analysis and calcite twin stress inversion to investigate the meso (outcrop and borehole) and micro (crystal) scale evidence for structural environments that have contributed to basin evolution. Our results indicate that basin evolution during the post-Albian may be markedly more complex than the previously thought stages of late Cretaceous inversion, renewed rifting and long-lived mid-Eocene to recent compression, with evidence for up to six structural environments detected across the basin, including; NE–SW and NW–SE extension, NW–SE compression, a previously undetected regime of NE–SW compression, and two regimes of strike-slip activity. By constraining structural environments on the meso- and micro-scale we can deliver higher levels of detail into structural evolution, which in turn, provides better-quality insights into multiple petroleum system elements, including secondary migration pathways and trap formation. Our research also shows that the Otway Basin presents a suitable environment for additional micro-scale structural investigations through calcite twin analyses.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献