Effect of boiling water, seed coat structure and provenance on the germination of Acacia melanoxylon seeds

Author:

Burrows Geoffrey E.,Virgona James M.,Heady Roger D.

Abstract

Acacia melanoxylon (Mimosoideae or Mimosaceae) is a high quality timber tree with an extensive natural distribution in Australia and a wide genetic and phenotypic diversity. Seeds from three widely differing provenances in Tasmania were tested to determine whether they had different responses to various dormancy-breaking treatments. All provenances had limited germination (<11%) if seeds were untreated and between 85% and 91% germination after 40 days if the seeds were nicked. For all provenances short (≤60 s) exposure to boiling water gave high germination percentages. These values were generally lower, although usually not significantly so, than the germination percentages following nicking. Germination percentages decreased with increasing time of exposure to boiling water, although one provenance had a significantly greater tolerance to one of the longer (20 min) treatments. Nicked seeds germinated quickly and uniformly, whereas those subjected to the boiling-water treatments germinated after a longer period and more gradually. In untreated seeds, the lens was a low, elliptically shaped dome (~110–135 µm wide, 140–190 µm long). In more than 99% of the seeds examined, the structure of the lens was markedly altered after a 10-s exposure to boiling water. A wide diversity of altered lens structure was found, from a circular hole between the macrosclereids, to a short fissure where the macrosclereids did not separate to their bases. Nicked seeds had a 200–375 times greater area for water uptake than a fully disrupted lens and this was probably the principal reason why the nicked seeds germinated sooner and more rapidly.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3