Photoperiod alters partitioning of newly-fixed 14C and reserve carbon into sorbitol, sucrose and starch in apple leaves, stems, and roots

Author:

Wang Z.,Yuan Z.,Quebedeaux B.

Abstract

The experiment was designed to determine how photoperiod duration affected the partitioning of newly-fixed 14C and reserve carbon into sorbitol, sucrose, and starch in apple source leaves, young sink leaves, stems, and roots. Apple plants (Malus domestica Borkh. cv. Gala), 1-year-old, were grown in environmental growth chambers and received five different photoperiod treatments of 1, 4, 7, 10 and 14 h for 8 d. On the eighth day of the light treatments, plants were exposed to 14CO2 for 15 min and harvested at 0, 2, 6, 12 and 24 h after labelling for carbohydrate and 14C-carbohydrate analyses. Sorbitol and starch concentrations in leaves, stems, and roots increased as photoperiod increased, and peaked near 10-h photoperiod. Sucrose concentrations, however, either did not change in mature leaves or decreased slightly in stems as photoperiod increased from 1 to 14 h. At 24 h after 14 CO2 labelling, plants grown in longer photoperiods had less [14C]sucrose, [14C]sorbitol and 14C-total soluble fraction remaining in mature leaves, but more 14C activities in stems and roots than those grown in shorter photoperiods. We suggest that the increases in 14C-carbohydrates in stems and roots under longer photoperiods are due to increased carbon export from mature source leaves.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3