Author:
Martin G. B.,Rodger J.,Blache D.
Abstract
Animals live in environments that are both complex and continually changing, so they have to respond to short- and long-term variations in a wide range of factors, such as photoperiod, nutrition and sociosexual signals. Before they were domesticated, animals developed reproductive strategies that coped with these changes and often took advantage of them. The physiological processes that implement these strategies have been modified to some extent during several millennia of controlled breeding, but most persist. Thus, many genotypes still exhibit profound responses to external inputs, such as the induction of ovulation by sociosexual signals and the doubling of litter size by a change in nutrition. The complexity in these responses is now becoming clearer. For example, with sociosexual signals, we now need to consider the stimulatory effects of males on females, of females on males and of females on females. Similarly, the impact of nutrition has been extended beyond the control of puberty and the production of gametes to include phenomena such as ‘fetal programming’, with its potentially profound effects on the life-long performance of the animals. Fortunately, our capacity to research these phenomena has been greatly enhanced by technical improvements in hormone assays, molecular and cellular biology, and real-time ultrasound. This has brought us a better understanding of several of the environmental influences on reproduction, including: the cellular processes within ovarian follicles that mediate the effect of nutrition on ovulation rate; the neuroendocrine pathways through which nutritional inputs affect the brain centres that control appetite and reproduction; and the intracerebral pathways through which sociosexual signals (olfactory and non-olfactory) stimulate the reproductive axis. Importantly, we are now beginning to realise that, as well as considering interactions between environmental inputs and genotype, we need to take into account interactions between the environmental factors themselves, just as the animals do. We still have a long way to go for a complete understanding, but we are nevertheless in a position where we can begin to use this information to develop new management systems for our animals to improve their productivity.
Subject
Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献