A thermodynamic analysis of the feasibility of water secretion into xylem vessels against a water potential gradient

Author:

Wegner Lars H.

Abstract

A series of recent publications has launched a debate on trans-membrane water secretion into root xylem vessels against a water potential gradient, energised by a cotransport with salts (e.g. KCl) that follow their chemical potential gradient. Cation–chloride–cotransporter -type transporters that function in this way in mammalian epithelia were detected in root stelar cells bordering on xylem vessels. Using literature data on barley (Hordeum vulgare L.) seedlings, one study confirmed that K+ and Cl– gradients across stelar cell membranes favour salt efflux. Moreover, the energetic costs of putative water secretion into the xylem (required for maintaining ionic gradients) would amount to just 0.12% of the energy captured by photosynthetic C assimilation if transpirational water flow relied exclusively on this mechanism. Here, a detailed thermodynamic analysis of water secretion into xylem vessels is undertaken, including an approach that exploits its analogy to a desalinisation process. Water backflow due to the passive hydraulic conductivity of stelar cell membranes is also considered. By comparing free energy consumption by putative water secretion with (i) the free energy pool provided by root respiration and (ii) stelar ATPase activity, the feasibility of this mechanism is confirmed but is shown to depend critically on the plant’s energy status.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empowering roots—Some current aspects of root bioenergetics;Frontiers in Plant Science;2022-08-16

2. Salinity and night-time transpiration under current climate scenarios;Stomata Regulation and Water Use Efficiency in Plants under Saline Soil Conditions;2022

3. Molecular Approaches to Potassium Uptake and Cellular Homeostasis in Plants Under Abiotic Stress;Role of Potassium in Abiotic Stress;2022

4. Adaptable and Multifunctional Ion-Conducting Aquaporins;Annual Review of Plant Biology;2021-06-17

5. Positive pressure in xylem and its role in hydraulic function;New Phytologist;2021-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3