Ecological roles and threats to aquatic refugia in arid landscapes: dryland river waterholes

Author:

Sheldon Fran,Bunn Stuart E.,Hughes Jane M.,Arthington Angela H.,Balcombe Stephen R.,Fellows Christine S.

Abstract

Dryland rivers are renowned for their periods of ‘boom’ related to the episodic floods that extend over vast floodplains and fuel incredible production, and periods of ‘bust’ where the extensive channel network is restricted to the permanent refugial waterholes. Many of these river systems are unregulated by dams but are under increasing pressure, especially from water abstraction and overland flow interception for agriculture and mining. Although some aquatic organisms with desiccation-resistant life stages can utilise ephemeral floodplain habitats, the larger river waterholes represent the only permanent aquatic habitat during extended periods of low or no flow. These waterholes act as aquatic refugia in an otherwise terrestrial landscape. Variable patterns of connection and disconnection in space and time are a fundamental driver of diversity and function in these dryland river systems, and are vital for dispersal and the maintenance of diverse populations, generate the spatial and temporal variability in assemblage structure for a range of different organisms and fuel the productivity that sustains higher trophic levels. Changes to natural patterns of connection and disconnection of refugial waterholes, owing to water-resource development or climate change, will threaten their persistence and diminish their functional capacity to act as aquatic refugia.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resilient floodplains in the Anthropocene;Resilience and Riverine Landscapes;2024

2. Rivers and resilience: A longer term view from the drylands;Resilience and Riverine Landscapes;2024

3. The Nitrogen Cycle;Wetzel's Limnology;2024

4. Monitoring long-term vegetation condition dynamics in persistent semi-arid wetland communities using time series of Landsat data;Science of The Total Environment;2023-12

5. Non-perennial segments in river networks;Nature Reviews Earth & Environment;2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3