Organic phosphorus in the aquatic environment

Author:

Baldwin Darren S.

Abstract

Environmental context Organic phosphorus can be one of the major fractions of phosphorus in many aquatic ecosystems. This paper discusses the distribution, cycling and ecological significance of five major classes of organic P in the aquatic environment and discusses several principles to guide organic P research into the future. Abstract Organic phosphorus can be one of the major fractions of phosphorus in many aquatic ecosystems. Unfortunately, in many studies the ‘organic’ P fraction is operationally defined. However, there are an increasing number of studies where the organic P species have been structurally characterised – in part because of the adoption of 31P NMR spectroscopic techniques. There are five classes of organic P species that have been specifically identified in the aquatic environment – nucleic acids, other nucleotides, inositol phosphates, phospholipids and phosphonates. This paper explores the identification, quantification, biogeochemical cycling and ecological significance of these organic P compounds. Based on this analysis, the paper then identifies a number of principles which could guide the research of organic P into the future. There is an ongoing need to develop methods for quickly and accurately identifying and quantifying organic P species in the environment. The types of ecosystems in which organic P dynamics are studied needs to be expanded; flowing waters, floodplains and small wetlands are currently all under-represented in the literature. While enzymatic hydrolysis is an important transformation pathway for the breakdown of organic P, more effort needs to be directed towards studying other potential transformation pathways. Similarly effort should be directed to estimating the rates of transformations, not simply reporting on the concentrations. And finally, further work is needed in elucidating other roles of organic P in the environment other than simply a source of P to aquatic organisms.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3