Evaluation of residual nutrient effects in soils

Author:

Russell JS

Abstract

Some nutrients applied to soils remain available to plants well beyond their time of application. Efficient use of fertilizers requires better definition of these residual effects. In this paper the behaviour of nutrients applied to soils is expressed as a mechanistic model comprising two differential equations:A / dt = F(t) + K3U − (K1 + K2) − P(t) dU / dt = K1A − K3U, where A and U are the available and and unavailable soil nutrient levels and K1, K2 and K3 are the fixation, loss and release coefficients respectively. The applied nutrient F(t) and the nutrient removed in harvested plant products P(t) are considered as impulses to the system. The solved form of these equations can be fitted to appropriate field experimental data by using iterative least squares procedures and parameters estimated. The model has been fitted to 6 years' experimental data where pasture responses to 16 different superphosphates regimes were measured on a soil with a high phosphate retention capacity. The estimated rates of fixation (K1), loss (K2) and release (K3) of available phosphorus as percentages per month on this soil were 1.29, 1.48 and 0.072 respectively, with release extremely low. To maintain pasture production on this soil the model suggests that high rates of phosphorus will be required for a long time, that it is wasteful to apply phosphorus above a specified maintenance level (as such phosphorus is either fixed or lost) and that biennial application is more efficient than annual. From the model the theoretical maximum residual available nutrient, c, in a soil at time t after application, is c(t) = [(K1exp{− (K1 + K3)t + (K3] / (K1 + K3), with the decay curve asymptoting to the value K3/ (K1 + K3) at equilibrium. On the soil studied this value was 5.3%. In practice, because of losses and plant removal, residual nutrient levels are usually less than the theoretical maximum. It is postulated that if the ratio of available to unavailable nutrient in a soil at equilibrium is 1 / z, then the theoretical maximum proportion of available applied nutrient at equilibrium is 1 / (z + 1). The model is likely to be most useful for major nutrients where residual effects are important in practice, e.g. phosphorus, sulphur, potassium and magnesium.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3