Binding mechanism of single-walled carbon nanotubes (SWCNTs) to serum albumin: spectroscopy and molecular modelling exploration

Author:

Hai Ying,Qu Kaili,Liu Yaquan,Zhao ChunyanORCID

Abstract

Environmental contextSingle-walled carbon nanotubes can have adverse physiological effects by interacting with proteins. Using serum bovine albumin as a model protein, we investigate the conformational changes in proteins at the tertiary structure level upon interaction with carbon nanotubes. This specific study of a model protein helps our understanding of the general binding mechanisms involved, and allows us to predict the potential adverse effects of carbon nanotubes interacting with other proteins. AbstractConsidering the large-scale production of diversified nanomaterials, it is of paramount importance to unravel the structural details of interactions between nanoparticles and biological systems at the molecular level, with the aim to reveal the potential adverse biological impacts. Herein, with single-walled carbon nanotubes (SWCNTs) acting as model nanomaterials and bovine serum albumin (BSA) acting as a model protein, a combination of spectroscopy experiments and molecular modelling was applied to help us unravel some important issues on the mechanism of protein interactions with SWCNTs. As a result, SWCNTs were first proved to bind at subdomain IB of BSA based on fluorescence experiments and molecular dynamics modelling. In addition, hydrophobic interactions were recognised as the driving force governing the binding behaviour between the SWCNTs and BSA. As a consequence, SWCNT binding led to a conformational change both at the secondary and tertiary structure levels. Insight into the binding details between BSA and SWCNT can help understand the recognition mechanism between SWCNTs and proteins, thus be helpful to predict the potential adverse effects of SWCNTs.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3