Simulation of maize and soybean yield using DSSAT under long-term conventional and no-till systems

Author:

Rai TeerathORCID,Kumar SandeepORCID,Nleya Thandiwe,Sexton Peter,Hoogenboom Gerrit

Abstract

Context No-tillage (NT) has been gaining popularity over the conventional tillage (CT) for agricultural sustainability. Field experiments conducted worldwide to compare crop production under NT vs CT systems are generally site specific and expensive to maintain over longer duration. To overcome this gap, process-based models have been used to simulate the potential impact and benefits of various management practices on crop yield and soil properties under different environmental conditions. Aims (1) We evaluated the Cropping System Model (CSM)-CERES-Maize and CSM-CROPGRO-Soybean model for NT and CT systems; and (2) compared the long-term impacts of NT and CT on crop yield and soil organic carbon (SOC). Methods Two crop models, available in the Decision Support System for Agrotechnology Transfer (DSSAT), were calibrated and evaluated using maize (Zea mays L.) and soybean (Glycine max L.) yield data from 2006 through 2011 under CT and NT treatments. Key results For crop yield, we showed that the coefficient of determination (R2) for the calibration and evaluation phases of CERES-Maize model were 0.94 and 0.94, respectively, while the index of agreement (d) for these phases were 0.93 and 0.86. Similarly, the R2 values for the calibration and evaluation phases of CROPGRO-Soybean model were 1.00 and 0.65, respectively, with d-values of 0.99 and 0.85. Conclusions The results from these long-term (30-year) simulations suggest that compared to CT, the NT system enhanced SOC over time and, hence, crop yield and biomass production. Implications Application of NT can be beneficial for enhancing the soils and crop production in the long-term as compared to the CT system.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3