Developmental competence of 8–16-cell stage bison embryos produced by interspecies somatic cell nuclear transfer

Author:

González-Grajales L. Antonio,Favetta Laura A.,King W. Allan,Mastromonaco Gabriela F.

Abstract

Altered communication between nuclear and cytoplasmic components has been linked to impaired development in interspecies somatic cell nuclear transfer (iSCNT) embryos as a result of genetic divergence between the two species. This study investigated the developmental potential and mitochondrial function of cattle (Bos taurus), plains bison (Bison bison bison) and wood bison (Bison bison athabascae) embryos produced by iSCNT using domestic cattle oocytes as cytoplasts. Embryos in all groups were analysed for development, accumulation of ATP, apoptosis and gene expression of nuclear- and mitochondrial-encoded genes at the 8–16-cell stage. The results of this study showed no significant differences in the proportion of developed embryos at the 2-, 4- and 8–16-cell stages between groups. However, significantly higher ATP levels were observed in cattle SCNT embryos compared with bison iSCNT embryos. Significantly more condensed and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL)-positive nuclei were found in plains bison iSCNT embryos. No significant differences in the expression levels of nuclear respiratory factor 2 (NRF2) or mitochondrial subunit 2 of cytochrome c oxidase (mt-COX2) were found in any of the groups. However, mitochondrial transcription factor A (TFAM) expression significantly differed between groups. The results of this study provide insights into the potential causes that might lead to embryonic arrest in bison iSCNT embryos, including mitochondrial dysfunction, increased apoptosis and abnormal gene expression.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3