A study of the interactions between salinity, soil erosion, and pollutant transport on three Queensland soils

Author:

Ghadiri H.,Hussein J.,Rose C. W.

Abstract

The effects of salinity and sodicity on soil erosion, sediment transport, and runoff water quality were studied under the simulated rainfall using 3 soils whose salinity and sodicity were artificially raised. Soil type and salt treatment both affected sediment loss, with a significant interaction between the 2 factors. The salt treatment decreased aggregate stability, reduced aggregate mean weight diameters, and increased sediment loss for all soils, but the soil with the most stable aggregates (Redlands) showed the highest impact. The initial treatment resulted in a sharp rise in the electrical conductivity (EC) and exchangeable sodium percentage (ESP) of all 3 soils but these increases were much higher in the sandy Toohey soil than the 2 clay soils. Electrical conductivities of all 3 treated soils decreased during the rainfall events, but the Toohey soil showed the largest decrease. The ESP of the treated Toohey soil decreased rapidly during the rainfall event due to its coarse texture, rapid renewal of its pore water, and the accessibility of its exchange sites by ions in the solution. The EC of the treated Redlands clay was reduced and its ESP increased during the rainfall events, which resulted in the weakening of its stable aggregates and increased erosion. Sodium adsorption ratio and EC of runoff water from treated soils decreased rapidly with rainfall duration for all 3 soils, but runoff from Toohey showed the largest decrease. The interaction between increased salinity-sodicity and erosion thus appears to be heavily dependent on soil texture, degree of aggregation, and aggregate stability, the 3 determinant factors for soil porosity and pore-size distribution. The results indicate that large sediment and salt losses can occur in runoff from saline-sodic soils, even at low slopes and from apparently stable soils, with major downstream water quality consequences.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3