Author:
Jin Ying,Wang Chuankuan,Zhou Zhenghu,Li Zhimin
Abstract
Exploring relationships between leaf hydraulics and economic traits is important in understanding the carbon–water coupling and in extending the leaf economics spectrum. In this study, leaf hydraulics, photosynthesis, structural and nutrient traits and photosynthetic resource use efficiency were measured for 10 temperate tree species in the north-eastern China. Leaf hydraulic conductance was positively correlated with photosynthetic traits, specific leaf area, leaf nitrogen concentration, photosynthetic water and nitrogen use efficiencies, suggesting co-ordination between leaf hydraulics and economic traits. Principal component analysis revealed that significant correlations existed among leaf hydraulic, photosynthetic and resource use traits (axis 1), and axis 2 was strongly associated with leaf structural and nutrient traits. The 10 species were distributed along the diagonal line between axis 1 and axis 2. Species displaying the ‘fast’ strategy tended to have higher photosynthetic rates, leaf hydraulic conductance and photosynthetic water and nutrient use efficiencies; however, they also had lower carbon investment and faced a greater risk of embolism. These findings indicate that leaf hydraulics, economics and resource uses together play an important role in determining species ecological strategies, and provide supports for the ‘fast–slow’ leaf economics spectrum.
Subject
Plant Science,Agronomy and Crop Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献