Grazing beef cows identified as efficient using a nutrition model partition more energy to lactation

Author:

dos Reis B. R.,Tedeschi L. O.,Saran Netto A.ORCID,Silva S. L.,Lancaster P. A.ORCID

Abstract

Context The efficiency of the cow–calf sector could be enhanced by matching cow biological type to the production environment; however, methods to estimate the biological efficiency of grazing beef cows are not available. Aims This study utilised a mathematical nutrition model for ranking beef cows for estimated biological efficiency, determining energetic efficiency and evaluate relationships with other production traits. Methods Cow live weight, calf birth and weaning weight, calf birth and weaning date, and forage nutritive value of hay and pasture were collected for 69 Brangus crossbred beef cows over a complete production cycle. The Cattle Value Discovery System for Beef Cow (CVDSbc) model was used to compute metabolisable energy required (MER) for the cow, and energy efficiency index (EEI) was computed as the ratio of MER to calf weaning weight. Pearson correlation coefficients were computed among performance traits. During late lactation and gestation, low (n=8) and high (n=8) EEI cows were individually fed ad libitum for 44 and 32 days, respectively, then fed 0.5× the estimated metabolisable energy required for maintenance for 7 days (gestation experiment only). Apparent nutrient digestibility, heat production, and milk yield were measured. Key results EEI was strongly negatively correlated (P<0.05) with model predicted peak milk (−0.62) and calf weaning weight (−0.65), but moderately correlated (P<0.05) with cow live weight (0.46). Dry matter intake was not different (P>0.75) between low and high EEI cows even though low EEI cows weighed less (P<0.05) during late lactation and gestation experiments. Low EEI cows tended to have greater efficiency of metabolisable energy use for maintenance and gain (P<0.10), and EEI was negatively correlated (P<0.05) with the efficiency of metabolisable energy use for maintenance (−0.56) and gain (−0.57). Conclusion The CVDSbc model identified cows that weaned heavier calves due to greater dry matter intake of cows relative to live weight allowing more energy apportioned towards lactation, and more efficient use of metabolisable energy for maintenance and gain. Implications Energy efficiency index might provide a logical assessment of biological efficiency of beef cows in grazing production systems.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3