A quantitative assessment of phosphorus forms in some Australian soils

Author:

Doolette A. L.,Smernik R. J.,Dougherty W. J.

Abstract

Solution 31P nuclear magnetic resonance (NMR) spectroscopy is the most common technique for the detailed characterisation of soil organic P, but is yet to be applied widely to Australian soils. We investigated the composition of soil P in 18 diverse Australian soils using this technique. Soils were treated with a mixture of sodium hydroxide–ethylenediaminetetra-acetic acid (NaOH-EDTA), which resulted in the extraction of up to 89% of total soil P. It was possible to identify up to 15 well-resolved resonances and one broad signal in each 31P NMR spectrum. The well-resolved resonances included those of orthophosphate, α- and β-glycerophosphate, phytate, adenosine-5′-monosphosphate, and scyllo-inositol phosphate, as well as five unassigned resonances in the monoester region and two unassigned resonances downfield (higher ppm values) of orthophosphate. The majority of 31P NMR signal in the NaOH-EDTA extracts was assigned to orthophosphate, representing 37–90% of extractable P. Orthophosphate monoesters comprised the next largest pool of extractable P (7–55%). The most prominent resonances were due to phytate, which comprised up to 9% of total NaOH-EDTA extractable P, and α- and β-glycerophosphate, which comprised 1–5% of total NaOH-EDTA extractable P. A substantially greater portion of organic P (2–39% of total NaOH-EDTA extractable P) appeared as a broad peak in the monoester P region; we propose that this is due to P found in large, ‘humic’ molecules. Orthophosphate diesters (1–5% of total NaOH-EDTA extractable P) and pyrophosphate (1–5% of total NaOH-EDTA extractable P) were minor components of P in all soil extracts. These results suggest that organic P in large humic molecules represents the second most abundant form of NaOH-EDTA extractable soil P (behind orthophosphate). Furthermore, small P-containing compounds, such as phytate, represent a much smaller proportion of soil P than is commonly assumed.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3