Stress-strain properties of individual Merino wool fibres are minor contributors to variations in staple strength induced by genetic selection and nutritional manipulation

Author:

Thompson A. N.,Hynd P. I.

Abstract

This paper investigates the contribution of single fibre stress-strain properties to variations in staple strength induced by both selective breeding for staple strength and nutritional manipulation. Merino weaners (n = 40), selected from ‘sound’ and ‘tender’ lines of staple strength selection flocks, were allocated to feeding regimes designed to induce liveweight changes simulating typical Mediterranean seasonal changes. Average staple strength differed by 5 N/ktex between ‘sound’ and ‘tender’ selection flocks and 18 N/ktex between extreme nutritional treatments. The force-extension properties of individual wool fibres (n = 100 per sheep) were measured using a single fibre strength meter. After normalising for differences in fibre cross-sectional area at the point of break, the key parameters used to describe the stress-strain curve for each fibre were: Young’s modulus (GPa), yield stress (MPa), stress at 15% strain (MPa), stress at break (MPa), strain at break (%) and work to break (MPa). The average stress-strain properties of single fibres differed widely between individual sheep. Stress at break ranged from 163 to 235 MPa (44% range), strain at break ranged from 21 to 44% (103% range) and work to break from 43 to 71 MPa (65% range). There were no significant differences in any of the single fibre properties between the staple strength selection flocks, nor was there any significant interaction (P > 0.05) between staple strength selection flock and nutritional regimes. Nutritional regime had a significant effect on stress at break, strain at break and work to break, but none of the single fibre stress-strain properties removed any appreciable variance in staple strength over and above that accounted for by differences in along- and between-fibre diameter variation. There appears to be little scope for improvement of single fibre stress-strain properties as a means of increasing staple strength in normal production environments. Selection directly for staple strength or indirectly using the fibre diameter variability traits is an effective method to improve staple strength.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3