Phosphorus sorption by sandy soils from Western Australia: effect of previously sorbed P on P buffer capacity and single-point P sorption indices

Author:

Bolland M. D. A.,Allen D. G.

Abstract

Soil samples collected from 8 field experiments in Western Australia to which 5–8 amounts of superphosphate had been applied once only 13–23 years previously were used to measure the phosphorus (P) buffer capacity of soil (PBC) and P sorption by several single-point indices. PBC was estimated from well-defined P sorption curves when several levels of P were added to soil suspensions, and was the amount of P sorbed when the concentration of P in the final solution was raised from 0.25 to 0.35 mg P/L. The single-point P sorption indices were measured by adding one amount of P (10 mg P/L) to soil suspensions (1 : 20, soil : 0.02 M KCl or 0.01 M CaCl2). Three indices were calculated from the amount of P sorbed by soil (S, mg P/kg soil) and the amount of P in solution (c, mg P/L)—(1) the phosphorus retention index (PRI, S/c [L/kg]), (2) the Freundlich retention index (FRI, S/c0.35 [dimensionless]), and (3) the phosphorus sorption index (PSI, S/log10 [c × 1000] [dimensionless])—to provide PRI K & Ca, FRI K & Ca, and PSI K & Ca values. P sorption was also measured by the P buffer index (PBI), the new single-point P sorption index recommended for national use, to provide PBICa values. To estimate the previous P sorbed by soil (native soil P is negligible for these soils, so previously sorbed P originates from fertiliser P applied in a previous year), the amount of P extracted by 0.5 M sodium bicarbonate from soil (Colwell soil test P) was added to the amount of P sorbed by soil to calculate PRI*K & Ca, FRI*K & Ca, PSI*K & Ca, and PBI*Ca values. In addition, previously sorbed P was estimated using the q coefficient of the Freundlich equation; q was added to P sorption to calculate PSI**, FRI**, PSI** and PBI** values to take account of previously sorbed P.For the 8 experiments, PBC values significantly decreased where more fertiliser P had been applied to the soils 13–23 years previously. This indicated that the capacity of the 8 soils to sorb P decreased as more P was applied in a previous year, and a single-point P sorption index would need to reflect this decrease. As the amount of P applied to soil in the field plots increased, the following trends occurred : (1) Colwell soil test P always increased; (2) PRIK & Ca, FRIK & Ca, PSIK & Ca, and PBICa consistently decreased; (3) PRI*K & Ca, FRI*K & Ca, PSI*K & Ca, and PBI*Ca mostly increased, but with some values being unaffected or decreasing; (4) PRI**, FRI**, PSI**, and PBI** values were largely unaffected by the amount of P applied in a previous year. Evidently, either adding Colwell soil test P or q to P sorption to calculate the single-point P sorption indices mostly overestimated P sorption by the sandy, low P sorbing soils used, but the overestimate was larger for Colwell soil test P than for q.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3