Influence of CNT loading and environmental stressors on leaching of polymer-associated chemicals from epoxy and polycarbonate nanocomposites

Author:

Walker ImariORCID,Montaño Manuel D.,Lankone Ronald S.,Fairbrother D. Howard,Ferguson P. LeeORCID

Abstract

Environmental contextCarbon nanotubes are added to polymers such as polycarbonate and epoxy to form nanocomposites with enhanced material properties. Environmental factors including temperature, UV light exposure and pH have the potential to degrade these composites and increase the release of toxic polymer-associated chemicals. This study investigates how carbon nanotube loading decreases the release of known endocrine-disrupting compounds, bisphenol A and 4-tert-butylphenol, from polymer nanocomposites under simulated weathering environments. AbstractNanoparticles such as carbon nanotubes are increasingly added to polymer matrices to improve tensile strength and electrical and thermal conductivity, and to reduce gas permeability. During use and after disposal, these plastic nanocomposites (PNCs) are degraded into microplastics by physical and chemical processes including mechanical abrasion, UV light exposure, hydrolysis and oxidation. Such polymers have the potential to enter aquatic environments and release potentially hazardous polymer-associated chemicals and transformation products. This work identifies and quantifies polymer-associated chemicals leached from polymers and nanocomposites during simulated environmental exposure. Epoxy and polycarbonate PNCs containing single-walled carbon nanotube (SWCNT) loadings ranging from 0 to 1 wt-% were exposed to water for 5 days, and the release of the chemicals bisphenol A (BPA) and 4-tert-butylphenol (TBP) was measured. The role of UV exposure, pH, temperature and natural organic matter in regulating chemical release was also investigated. Temperature, pH and UV light were found to be the most significant factors influencing release of TBP and BPA from PNCs. Additionally, increasing carbon nanotube loading in both polycarbonate and epoxy composites was found to decrease the release of these phenolic chemicals. A 0.3% higher SWCNT loading decreased the release of BPA 45±18%, and a 1% SWCNT loading decreased chemical release from epoxy by 48±26% for BPA and 58±8% for TBP. This information provides important data that can be used to help assess the risks posed by SWCNT polymer nanocomposites in aqueous environments, particularly as they age and are transformed.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3